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A class of implicit finite element upwind schemes for solving Euler equations is presented. 
Steady flows with extreme conditions such as high Mach numbers or/and large angles of 
attack on unstructured meshes can be simulated. Upwind methods are used for the spatial 
approximation. Higher rates of convergence are obtained by using an implicit scheme relying 
on a linearization of fluxes and a partial resolution of the systems by a Gauss-Seidel algo- 
rithm. The scheme that we get is more efficient and robust than explicit time integration. 
0 1989 Academic Press. Inc. 

I. INTRODUCTION 

This paper follows the works of Dervieux et al. [2-61, dealing with Euler flow 
simulation in complex geometries, such as an aircraft, in transonic and supersonic 
regimes. For this purpose it is interesting and important to build schemes not 
relying strongly on the regularity of the mesh. Building an approximation scheme 
on an unstructured grid (of finite element type) or, possibly, on a distorted (maybe 
locally refined) grid is difficult since the strong variation in the spacing may disturb 
the internal viscosity of the scheme. With unstructured meshes, the splitting of 
matrices along the X, y directions may be irrelevant, and the fully multidimensional 
matrices must be used. Using such grids in combination with explicit schemes leads 
to strict limitations on the time-step; hence, a large computing time is needed to get 
to steady state. 

Implicit solvers which permit large time steps and CFL numbers lead to a signili- 
cant decrease in computing time. 
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Two types of implicit methods can be found in the literature: 

-schemes involving elliptic operators [ 14, 161. 

-linearization of the hyperbolic operator. 

Only the second approach is considered here. 
Beam and Warming [7], among the earliest, have given an important contribu- 

tion with their approximate-factorization finite-difference scheme. Two implicit con- 
servative and non-conservative versions of Harten’s scheme [ 131 are presented by 
Yee, Harten, and Warming [32], and recently Yee [33] gave accurate results with 
the TVD version. All these schemes require the solution of block-tridiugonal linear 
systems and are extended in two dimensions by an AD1 technique. 

The upwind flux-splitting scheme of Steger and Warming [24] leads to a 
bidiugonal linear system. The scheme proposed by MacCormack [17] is non- 
centered and the linear systems are also bidiugonal. An extension of this scheme was 
also studied by Casier, Deconinck, and Hirsch [S] in a l-dimensional context. 

Rai and Chakravarty [22] have presented an implicit version of the second-order 
finite difference scheme of Osher [20] where the linear systems are solved by a 
relaxation method. Mulder and Van Leer [19] present an implicit upwind 
difference scheme for the l-dimensional Euler equations. They use upwind spatial 
differencing and linearization in time. This method is extended to the 2-dimensional 
case in generalized coordinates by Van Leer et al. [ 19, 271; two implicit solvers are 
described: a factorization method and a linear relaxation. 

The implicit method proposed by Stoufflet [25] applies to unstructured meshes 
and involves a linearization of the first-order upwind scheme of Vijayasundaram 
[31] solved by a relaxation iteration. This method can be used to get an implicit 
version of a given explicit scheme, whether it be centered or upwind. Our purpose 
is to extend this method to a large class of upwind approximations of first- or 
second-order accuracy, especially adapted to unstructured meshes, Two basic 
ingredients are used in the present work. 

First for the spatial approximation, a second-order version of some first-order 
upwind schemes in conservative form is built following the method introduced 
by Van Leer [30]. This is done by local interpolation around nodes and some 
limitation on the slopes for the sake of monotonicity preservation. This method 
has been already extended to triangular finite elements grids by Vijayasundaram 
(unpublished) and Fezoui [lo] and to fully 2-dimensional finite difference meshes 
by Montagne [18]. ’ 

Second for advancing in time, an implicit integrating step is used. Since we are 
mainly interested by obtaining fast convergence to steady state solutions, the time 
integration is only an intermediate stage which should be performed as efficiently 
as possible. 

The resulting scheme is, regarding the spatial approximation, a finite element- 
finite .volume second-order scheme without any artificial viscosity parameter. 

The time integrator is the first-order implicit linearized scheme of Stoufflet. This 
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method was especially successful to compute flows with extreme conditions such as, 
for instance, large Mach numer regimes, large angles of attack, and very irregular 
meshes in terms of aspect ratios of elements. 

In the first part of the paper we recall the expressions for some numerical fluxes 
and study the time integration. The second part deals with the extension of the 
scheme to 2-dimensional unstructured meshes. Numerical experiments with different 
meshes and flux functions are presented. 

II. MATHEMATICAL MODELLING 

In this section we recall the mathematical problem and set some definitions and 
notations which will be used in the sequel. 

1. Governing Equations 

Let Q c %* be the flow domain and r be its boundary. The conservative law 
form of the equations in two dimensions is 

(2.1) 

where p is the density, U = (u, V) is the velocity vector, e is the total specific energy, 
and p is the pressure of the fluid, with the equation of state given for a perfect gas 
as 

p=(~-ll)(e-$ IlU2). (2.2) 

We introduce the vector 

F(W)= 

The conservative system (2.1) can be rewritten 

; W+V-F(W)=O. 

(2.3) 

(2.4) 
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We recall that system (2.1) is a hyperbolic system, so that for every couple of real 
(aI, CQ), the Jacobian matrix P(a,, aZ, W) = a1 F;( W) + a,F;( IV) is diagonalizable 
in the diagonal matrix A(a,,a,, W)=diag[A(k)(a,,a,, W)] and its right eigen- 
vector matrix is denoted by T(a, , az, W). For any real function f, we can define 

fU%~ a2, W))=T-'(al,a2, WdiagCf(~'k)(a,, a2, WI1 7’(a1,a2, W 

2. Boundary Conditions 

We consider flows around airfoils of inlets, for instance; the domain of computa- 
tion Sz is described by Fig. 1, where n is the unit vector of the normal to the 
boundary r = r, u Too. 

We assume the flow to be uniform at infinitiy, and the variables to be non-dimen- 
sionalized by the free-stream vector W, given by 

u,= cosa 
( ) sin a 

(2.5) 

where a is the angle of attack and M, denotes the free-stream Mach number. On 
the wall boundary r,, we assume the slip condition 

3. Definitions 

U.n=O. (2.6) 

We assume that Q is a polygonal bounded domain of ‘33’. Let Yh be a standard 
triangulation of 52 and h the maximal length of the edges of the triangles of Yh. We 
need to introduce the following notations. 

For every vertex Sj (i = 1, .., nh) of 3$, the cell si is the union of the subtriangles 
resulting from the subdivision by means of the medians of each triangle of Yh and 
having Si as a vertex (Fig. 2). The boundary of gi is denoted by ~33~ and the unit 

FIGURE 1 
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FIGURE 2 

vector of the outward normal to c%$‘~ by vi= (vi,., viY). The union of all these cells 
constitutes a partition of domain Q. 

For every vertex Si, rc(i) is the set of neighboring nodes of Si. For every domain 
OcQ we recall that x(O) is the characteristic function of 13. 

We introduce the following discrete spaces (with Pk is the space of polynomials 
in two variables of degrees at most k): 

“tT= {Uh~UhECO(SZ), U,l,EP,, VTEYh} 

~~={u,lu,~L~(Q),u~l~,=u~=constant;i=1,...,n,}. 

Any function 4 belonging to ?$ is uniquely determined by its values d(Si) at each 
vertex Si and if we note (Ni)y= 1 the basis set of Vh, we have 

4= C dtSiJNi. 
i= 1.Q 

There exists a natural bijection between spaces “yh and wh defined by 

v4 E ^t/;r, s(4) = C dtsi) Xtsi). 
i= I.nf, 

III. UPWIND APPROXIMATIONS 

In this part we develop a systematic procedure to extend on standard triangula- 
tions any 3-points scheme defined by a numerical flux function. Then an extension 
to high-order approximations is proposed. 

1. First-Order Accurate Scheme 

We consider a l-dimensional system of conservation law with a flux function 
given by F: ‘B2” + !JY, where m is the dimension of the system 

; W+$F(W)=O; WE9Y. (3.1) 
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The matrix A(W) = dF/dW is the Jacobian matrix of the flux function. We know 
that a 3-points conservative finite difference scheme is characterized by its numeri- 
cal flux function QF( U, V) depending on two variables U and V and satisfying the 
consistency equation QF( U, U) = F(U). 

The expression of the semi-discretized approximation is given by 

aw, i 
~+~(@i+~/2-@i-1/*)=” 

@i+ l/2 =@)FtWi9 wi+l) 

@i- l/2 =@F(Wj-l, wi), 

(3.2) 

where Wi is the value of the numerical approximation W,, of the solution of (3.1) 
at x = i Ax and Ax is the space step. 

We construct a 2-dimensional extension of this class of schemes as follows. Let 
us take the approximation W, in the space (vh)“‘. A variational approach of equa- 
tion (2.1) is derived: 

Find W, E ( Vh)“‘, WI E cl 

I 
uT&dx+j V.F(W,)S($,)dx=O. 

R 

(3.3) 

The above formulation can be called a finite volume Galerkin (FVG) approxima- 
tion. Taking in Eq. (3.3) the function d,, as the shape function Ni associated to the 
node Si and integrating by parts with Green’s formula on each cell Si, the problem 
becomes 

Find W,, E (Vh)h)m 

s aw, -Nidx= 
ra at i F( W,) . vi do 

a.$ 

(3.4) 

Equality (3.4) is just the formulation of the flux balance for the control volume Si. 
The scheme will be completely defined if we define which approximation is used 

to compute the right-hand-side integral in (3.4). For this, the boundary aSi of the 
cell Si is split in bisegments as, joining the middle point of the segment SiSj to the 
centroids of the triangle having Si and Sj as common vertices (Fig. 3). 

Let us introduce the notations: 

F,(U)= F(U).j vidu 
as, 

~,(u)=WW~a9ti vix da + Fit u) Is, viy da = V . F(U) . I, vi da. 
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FIGURE 3 

Problem (3.3) has the formulation: 

Find W,, E ( $Qm 

s ,$+idx= - c 1 - F(W,).vida (1) 
joK(i) dSk 

- 

I a.!?, n I-b 
F(@‘,,).ndo (2) 

- s F(l?h).nda 
as, n rm 

(3). (3.5) 

Let HF’ denote the first term (1) of the right-hand side RHS of (3.4). The 
computation of this term will involve the numerical flux function CD of a first-order 
accurate upwind scheme described in (3.2) by 

where Wi = W,,(Si) and Wj = W,,(Sj). 
We recall the delinition (by their flux numerical function) of the first-order- 

accurate schemes we have used in this study: 

Steger and Warming’s scheme [24] 

@;w(u, V)=A+(U)U+A-(Y)V; (3.6) 
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Vijayasundaram ‘s scheme [ 3 11 

Osher’s scheme [20] 

(3.7) 

(3.8) 

Remark (1). On the other hand, if we compute now the term ( 1) by a centered 
numerical integration (for example, at the midpoints of the segments, we can easily 
check if we suppose that F varies linearly on each element that the resulting 
formulation is strictly equivalent to the finite element , Galerkin approximation 
given by 

Find W, E ( YQm, 

I Q~b,dx=ja F(W,,).V4,dx. 

The proof lies on the geometrical identity 

s - 3vi dc = area(Ti)(VN,(Th) - VN,(Ti)) + area(Ti)(VN,(T$) - VN~(T;)), 
asi) 

where Ti and Ti are the two triangles having SiSj as an edge (Fig. 3). 

2. Second-Order Extension 

The numerical integration with upwind scheme as described previously lead to 
approximations which are only first-order accurate ones. We present a modification 
of problem (3.5) in order to get a second-order accurate solution without changing 
the approximation space. 

The ingredients to construct in such a way a second-order accurate approxima- 
tion are: 

(1) A dissipative first-order accurate (quasi-monotone) scheme. 

(2) A second-order scheme derived from the previous one by using linear 
interpolations in the computations of the fluxes. 

(3) A limiting procedure which reduces the oscillations of the solution. 

A construction of this type introduced in [ll, 261 is developed in the present 
context and is an extension of Van Leer method’s [30] to the case of nonstructured 
meshes. 

Let us recall briefly that in one space dimension the method consists in a linear 
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interpolation of W over each interval Z, = I(i- f) Ax; (i+ 4) Ax/ such that W is 
given by 

W(x) = w, + (x - XJP, for XE I, 

Pi=(W,+l- Wip,)/2Ax. 

Then the fluxes are computed with the values Wy+t1,2i- = Wi+ (Ax/2)P, and 
WI+(1/2)+ = Wi+ I- (AXP)Pi+ 1 of W at each side of the interface xi+ 1,2. 

The spatially second-order accurate version of (3.2) is then given by: 

aw, 1 
-$+~(@i+l/*-@i-L/*)=” 

@i+ l/2 =@FlWi+(1/2)-, wi+C1/2)+) 
(3.9) 

@i-1/2 =@F(Wi-(l/2)-> Wic(1,2)+) 

If we return to the 2-dimensional situation, to build a second-order-accurate 
approximation, we need to define the gradient of the solution at each vertex. 
Clearly, the gradient of a function vh of V,, is constant in each element and discon- 
tinuous in the domain. We can use the following Galerkin projection to define a 
gradient (VU,,)~ at each vertex Si: 

(vv,)j=‘--j 
area( Si) 

Vu, dx. 
S 

This interpolation is called “Hermitian interpolation” in [ 111. 
The scheme obtained is a direct extension of the first-order accurate scheme (3.4) 

and its formulations is 

Find W,, E ( ,ylt)m 

I .2N,dx= - 1 ff;‘+j F(W;).ndc+jdgnr F(@).nda, 

(3.10) 

je K(i) aS,fl rh I u 

where 

H(2) = &.( w.- 11 w+ ) II’ B 
w,; = wj + f(V w)i. sis, (3.11) 

w; = w, - $(V W), . sisj. 

In some cases (transonic and supersonic flows, for example) we need to use a 
limiting procedure which acts to reduce numerical oscillations of the solution. This 
is done by a new definition of the values W,y and Wl at cell interfaces. We remark 
first: 

vw~~f,.sis/=vw~T:,.sisj= w,- w, 
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Then we define extrapolated gradients in such a manner: 

(vw-)i=2(vw)i-vwI.; 

(vw+)j=2(vw)j-vwIT~~ c( = 1 or 2, 

where Tk and Tij’ are the two triangles described in Fig. 3. 
The values at interface needed to compute the flux HB’ are now given by: 

p,y = w,+ L7 
'I 

( 

y+vw~)i+~(vw),.;) .sjsj 

@; = wj- L; 
( 

y+vw+)j+~(vw)l.~).sisj, 

where the parameter K can be chosen to select the degree of upwinding in the inter- 
polation and L!; and Ll are the limiting matrices. In all applications we have 
taken K =0 which corresponds to the so-called Fromm scheme in the MUSCL 
approach [30]. Various slope limiters can be used to eliminate oscillations. The 
limiting function used in the applications is one proposed by Van Leer [30], 

2(4 yi ( Wjk’ - Wi”‘) + & 1 ’ 

2(A’:‘)j ( Wjk’ - Wi”‘) + & 
(3.12) 

(Lly’);+(wy- Wiky2+& 1 
where (d-)i= (VW-)i.SiSj, (d +)j= (VW+)j.SiSj, and E is a small number that 
prevents zero division. 

A better procedure in terms of accuracy is to use limiters on characteristic 
variables. For this, we compute these variables by the transformation taken at mid- 
point of the segment. If we denote by T, the transformation matrix corresponding 
to PJ W((Si + Sj)/2), the values at the interface are now given by 

ti; = Wj - T&c; T,; 1 qqvw,),+y(vw) IT,,).SiSj 

with 

2(T,~‘(d_)i)‘“‘(Tii’(Wj- Wi))‘k’+C 
(T,~1(d_)i)(k)2+(Tii1(Wj- Wi))(k)2+~ 1 

and the same for Lcl. 
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3. Boundary Conditions 

The second term (2) and the third term (3) of the RHS of (3.6) contain the 
physical boundary conditions. They are taken into account through the vector w; 
which is computed from quantities depending on the interior value Wt and by 
quantities determined from physical boundary conditions. 

Wall boundary. The vector W,, is assumed to satisfy the slip condition thus term 
(2) is computed as 

(3.13) 

where p is taken as the interior pressure p( W,). (Note that in this procedure, the 
slip condition is applied in a weak variational way, as in cell-centered finite volume 
formulations.) 

Znjlow and outflow boundaries. At these boundaries we have to select a precise 
set of compatible exterior datas, depending on the flow regime and the direction of 
velocity. For this purpose a plus-minus flux splitting is applied between exterior 
data and interior values. More precisely, the boundary integral (3 ) is evaluated 
with the use of the flux-splitting, 

I aS,nr, 
F(‘h)*ndo=P,+,(Wi). wi+P,~(Wi). W,, (3.14) 

where 

IV. IMPLICIT SoLvn~s 

An explicit version in time of semi-discretized approximation (3.9) can be derived 
by using a diagonal mass-lumped matrix C = diag(area($,)/dt) for the left-hand 
side and by replacing the time derivative by an explicit difference 

with Ei( WE) = RHS(3.9). 

s~~=c-‘E;(W;:) (4.1) 

This scheme is only first-order accurate in time. However, explicit versions which 
are second-order accurate (at least) can be built by using a two-step scheme 
(Hancock-Van Leer [12]), Fezoui [lo], or a Runge-Kutta method (Turkel and 
Van Leer [28]). 



IMPLICIT UPWIND SCHEMES 185 

1. First-Order Schemes 

First we show the procedure to get an implicit linearized version on the 
monodimensional case for simplicity. Suppose given the class of explicit upwind 
schemes, 

@1+ l/2 =@(Wl, w;+l) (4.2) 

@(U, V)=H,(U, V)U+H,(U, V)V for U, VE!P 

H,(U, u+ff,(u V=NW, 

where the third line is a tentative linearization and where the fourth line is a 
consistency property. 

For instance, in the applications we have used the Steger-Warming scheme 
which belongs to this class of schemes with: 

H,(U, V)=A+(U) 
(4.3) 

H2(U, V)=A-(V). 

This numerical flux function does not satisfy the assumption: 

@(UP v is differentiable w.r.t. (U, V). (4.4) 

If (4.4) were true, then we could consider the Newton-like linearized implicit 
version of the scheme (4.2): 

W n+l- wn+3@::,n-@~*,2)=o 

@r+ l/2 =@“(Wl, WY,,, WY”, WY;;) (4.5) 

c-1/2 = @“( wyel, WY, WY’;, WY”) 

@N(u, v, W,Z)=@(U, V)+@,.(U, V)(W-U)+O,.(lJ, V)(Z-V). 

Now the derivatives of @ may be very expensive to compute, so we introduce the 
simplified linearized version of (4.5) 

(4.6) 

The resulting scheme is in fact a modified Newton’s method where the exact 
Jacobians arising in (4.5) are replaced by simpler expressions. 
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We can rewrite (4.6) with a delta formulation, 

gH’;,i+ l/2 6 W;;l’ + 2; 6 WY + ’ - OH;,+ ,,2 6 W;t; = - a( @I+ 1,2 - CDT- ,,2) 

Z: =I+ o&+,,,-OH;,,-,,, (4.7) 

SW;+‘= w;+‘- WY, 

where Q = At/Ax and Z is the identity matrix. 

PROPOSITION (1). Under assumption (4.4) schemes (4.5) and (4.6) have the same 
equivalent system up to the second-order, that is, the system approximated by the 
schemes with a second-order accuracy. 

PROPOSITION (2). In the scalar linear case, schemes (4.5) and (4.6) are identical 
and unconditionally stable. 

The proof of the above propositions can be found in [25]. 

Remark (1). We cannot ensure that scheme (4.6) will become a quadratically 
converging method (“quasi-Newton”) for At tending to infinity as Newton’s method 
in the vicinity of the solution, but we may expect a similar efficiency for the two 
schemes for a large At if the unknowns do not vary too much (as in the case from 
convergence to steady state). 

Although the scheme (3.5) does not satisfy a priori the assumption of differen- 
tiable fluxes (4.4), we propose nevertheless to apply the linearization method to get 
an implicit version of this formulation. The above linearization can be applied to 
the early formulation (3.5) by using the simplified scheme @sY and can lead to a 
linear system of the form: 

M(W;).(W”,+’ - WE) = B( Wi). (4.8) 

The matrix M has the suitable properties (diagonaly dominant in the scalar case) 
allowing the use of a relaxation procedure to solve the linear system as shown in 
Ref. [25]. 

Such iterative methods considered as modified Newton’s methods have been 
analyzed by Jespersen and Pulliam [ 151. These authors showed by a rigorous 
analysis that the use of incorrect Jacobian matrices can lead to a conditional 
stability. Nevertheless, the numerical experiments presented below prove the 
efficiency of this simple approximate Newton’s method. 

2. Second-Order Schemes 

If we consider Eq. (4.7) in the delta formulation, an efficient way to get second- 
order accurate stationary solutions while keeping the interesting properties of the 
first-order accurate upwind matrix is to replace the RHS of (4.7) by the second- 
order accurate spatial approximation introduced in Section III. It is convenient to 
present the resulting scheme as a two-phase algorithm. Starting from an arbitrary 
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second-order accurate approximation denoted by E i( W) the resulting scheme can 
be written as: 

(i) Physical/explicit/second-order accurate phase 

(ii) Mathematical/implicit/first-order accurate phase 

(4.9) 

(4.10) 

The following properties are easy to prove: 

PROPOSITION (3). In the monodimensional scalar linear case, the scheme defined 
by (4.8) and (49) is unconditionally stable. 

PROPOSITION (4). The steady state solutions are second-order accurate and do not 
depend on the time step used for their computation. 

The previous procedure is rather close to that of Van Leer et al. [27, 283, 
although they point out in this paper that the split fluxes used in the explicit phase 
should be continuously differentiable. 

In most of the applications, we have built the mathematical part from 
Steger-Warming’s flux splitting. In this case, the complete formulation (including 
linearization of boundary terms and use of local time-stepping) of the method in 
two space dimensions is given by 

Find Wt+ ’ E ( Vh)m 

S@= -&(E;( W;))i 

swY+ci 
( 

1 Pl(Wy) 6W,+oi 1 P,i(W,“)SWT 
js K(i) ) ’ - (jstc(i) ) (4.11) 

+aiP,‘,(W:)6WT+di 
D 

Qb(Wn)SW’rda=6&i 
a$ n rb 

w;+‘= w;+sw;, (4.11) 

where dj = zJarea(gi), zi is a local time step, and the matrix Qs, derived from the 
linearization of the wall boundary conditions [28], is given by 

Q,,(W) = ii; Ii-1 1;: fj (4.12) 

with q = (u* + v*)/2. 

581/84/l-13 
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At the end we obtain a quasi-Newton method with three simplifications: 

(1) We use a simplified Jacobian in the linearization. 

(2) We use a different upwind scheme in the flux approximation and in the 
linearized part (in the applications, typically we compute the fluxes with Osher 
Riemann solver and the matrix with the simple Steger-Warming splitting). 

(3) The fluxes are approximate with a second-order accurate scheme but the 
matrix is derived from the first-order one. 

V. NUMERICAL EXPERIMENTS 

Our purpose throughout these numerical experiments was not to test the 
accuracy of the spatial approximation but to emphase the efficiency of the implicit 
method and to compare with the explicit one to get a steady solution of the Euler 
equations in different situations. We have used either first-order accurate or second- 
order accurate approximations depending on the test case. Once the type of the 
spatial approximation and the iterative procedure have been chosen, the only 
remaining point is the resolution of the linear system. It appears that Gauss-Seidel 
relaxation resolution can be very efficient to get the steady solution. Concerning the 
matrix storage, no optimization in ordering the nodes of the mesh (which are a 
priori arbitrarily ordered) is needed because only the non-zero entries of the matrix 
are stored. For each test case, we compare in Table I the efficiency measured by the 
ratio of CPU time needed to reduce the residual by five orders of magnitude 
starting from free-stream conditions. The residual is defined in the L2 norm of the 
flux evaluated for the continuity equation. In all computations, local time stepping 
based on a CFL number is used in both explicit and implicit versions of the scheme. 
The CPU times are given for an IBM3090 scalar computer. The average speed is 
about 5 Mflops. Efficiency for each test case is presented in Table I. 

TABLE I 

Eficiency for the Different Cases 

Test case Flow regime Nodes number Efficiency 

A 0.85 1512 1.5 
Bl 0.63 2” 3200 11 
B2 0.63 2” 4800 12 
B3 0.85 1” 3200 7 
B4 2. 10” 1360 7 
BS 0.85 1” 2492 8.3 
Cl 8. 0” 1908 9 
c2 8. 20” 1908 8 
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A. Steady Flow in a Channel 

We choose first a test problem proposed at the GAMM workshop held in 1979 
in Stockholm [23] to evaluate the efficiency of the implicit algorithm used as a 
quasi-Newton method. 

Free-stream values correspond to a Mach number of 0.85, for which the flow is 
transonic. For consistency with the GAMM test, we use a 72 x 21 triangular mesh. 
The solver used for this problem relies on Vijayasundaram splitting in both explicit 
and implicit part. The linear system is solved by a complete nodewise collective 
Gauss-Seidel relaxation method (about 50 relaxation sweeps). If a high CFL 
number (103) is chosen, the steady solution is obtained with few iterations (about 
10); the procedure behaves like a Newton-Raphson method when the initial solu- 
tion is closed to the final one. An attractive strategy to determine the CFL number 
during the convergence is to take it as a function of the inverse of the residual. We 
present in Fig. 4 the convergence history and in Table I the efficiency of the implicit 
method with a CFL number equal to the inverse of the residual versus the explicit 
one (here a backward Euler time integrator). The implicit solver converges in about 
10 iterations when the explicit one needs more than 5000 time steps. 

0 

-2 

-4 

-6 

-8 

7 15 22 
b 

FIG. 4. Residual history for implicit first-order accurate method for the GAMM channel problem: 
angle of attack 0.00, CFL l/residual; free-stream Mach 0.85; log residual. 
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We notice that the convergence is trully quadratic until the steady solution is 
practically reached (residual of the order of 10-4) and beyond, the convergence 
becomes linear. This point confirms the efficiency of the chosen linearization. For 
other numerical results (iso-contours, distributions, . ..) we refer to [25]. 

B. Steady Flow around a NACAOO12 Airfoil 

Once again, we are interesting in steady flows calculations around this profile 
proposed at the same GAMM workshop [23]. 

We present six numerical experiments which differ by the Mach number M,, the 
angle of attack a and the quality of the mesh in order to explore the capabilities of 
the described methodology. All calculations have been performed with second-order 
approximations relying on the Osher’s Riemann solver and characteristic limiters. 
The linear system of the implicit method derived from the Steger-Warming splitting 
is solved by the nodewise collective Gauss-Seidel relaxation. A first statement can 
be deduced from these experiments: it is no longer possible in the present test cases 
to use so large CFL numbers as in (A) problem. This is probably due to the 
existence of a stagnation point where the gradients of the solution are important. 

FIG. 5. Enlargement of the 4800 nodes mesh. 
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So, starting from a uniform flowfield as initial guess, very large transients occur 
which prevent from using a large CFL number during the initial period. A good 
strategy is then to choose the CFL number equal to the iteration number. The 
maximum value is fixed to 50. The method is no longer a Newton-like method and 
it becomes worthwhile to solve exactly the linear system involved in each pseudo- 
time iteration. In these conditions it seems sufficient to use only a small number of 
relaxation sweeps in order to obtain both stability and convergence to the steady 
state. In the applications, the resolution is stopped when the relaxation convergence 
is less than 10-3. Moreover, relaxation sweeps are performed alternatively by 
taking points in the increased order then in the decreased one. No improvement in 
efficiency can be expected by the complete resolution of the linear system. 

? MIN = -1.1@2 

t I I I I I I I I I IL.-u. I I 1 1 I I 
“: O.B@ cl.50 1.m 

3 
x/c 

FIG. 6. Pressure coefficient distribution for NACAl2 airfoil: M, =0.63; a = 2”; CFL 50; 500 
iterations. 
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@,I M, =0.63; a=2"; O-mesh 3200 nodes 6144 elements 

(W M, =0.63; a= 2"; O-mesh 4800 nodes 10,240 elements 

(B3) M, =0.85; a = 1”; O-mesh 3200 nodes 6144 elements 

(BJ M, = 2.00; a = 10”; O-mesh 1360 nodes 2560 elements 

(B,) M, =0.85; a= 1”; 2492 nodes 4765 elements. 

The unstructured and irregular mesh used in (B5) has been obtained from one 
of the above O-mesh (1360 nodes) by Palmerio’s self-adaptive mesh refinement 
technique [21]. 

ENTROPY 

4 MIN = B.BOO 

MRX = 0.005 

FIG. 7. Entropy distribution for NACA12 airfoil: M, = 0.63; G( = 2”; CFL 50; 500 iterations. 
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LOG RESIDURL 
am 

FIG. 8. Comparison of residual history for explicit and implicit methods for NACAl2 airfoil at 
M, = 0.63; a = 2” on the 3200 nodes mesh; CFL 50: CPU 98 min (a); 294 min (b). 

In each test case, we compare explicit and implicit versions of the scheme with 
the same spatial approximation. For all computations, the reference explicit method 
is a four-step Runge-Kutta algorithm with coefficients c1 = 0.11, c2 = 0.2766, 
c3 = 0.5, and cq = 1.00 used with a CFL number of 1.8. 

The first two cases (B,) and (B2) considered are a subcritical flow around a 
NACAO012 airfoil at M, = 0.63 and c1= 2”, computed with two O-meshes of 3200 
nodes and 6144 elements for the first one and 4800 nodes and 10,240 elements for 
the second one which is presented on Fig. 5. The computed pressure coefficient and 
entropy distributions are shown on Figs. 6 and 7 for the second case. Convergence 
histories of residual for both methods are shown in Figs. 8 and 9. The average 

FIG. 9. Comparison of residual history for explicit and implicit methods for NACAl2 airfoil at 
M, = 0.63; a = 2” on the 4800 nodes mesh; CFL 50: CPU 176 min (a); 488 min (b). 
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number of relaxation sweeps at each iteration needed to reach the prescribed con- 
vergence level (10e3) is about 40 for the first test case and 45 for the second one. 

Lift coefficient C,, drag coefficient Cd, and maximum of entropy level Z,,, 
obtained on each mesh are 

(B,) C, =0.366, Cd =0.00094, C,,, =0.0079 

(B2) C, = 0.337, Cd = 0.00033, Z’,,, = 0.0051 

which compare well with available results. 
The efficiency ratio is more than 10 for both meshes; the efficiency of the implicit 

solver is preserved and even reinforced on the fine mesh. 

FIG. 10. Pressure coeffkient distribution for NACAl2 airfoil: M, =0.85; tl= 1”; CFL 50; 500 
iterations. 
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The third test case (B3) considered is a transonic flow around the same airfoil at 
M, = 0.85 and a = lo, computed with the previous O-mesh of 3200 nodes and 6144 
elements. The computed pressure coefficient and entropy distributions are shown on 
Figs. 10 and 11 and iso-Mach lines are plotted on Fig. 12. Convergence histories of 
residual for both methods are shown in Fig. 13. 

Lift coefficient C,, drag coefficient Cd, and pitching moment C, are obtained 
without applying any correction at the farlield boundary: 

(BJ C, = 0.360, C, = 0.0573, C, = -0.1217. 

For this transonic test case, the residual is less than lo-” after about 500 iterations 
which means about 5000 s on the IBM 3090 computer. The following test case (B4) 

ENTAOPT 

MIN = fl.UIll 

MAX = D.025 

FIG. Il. Entropy distribution for NACAO012 airfoil: M, = 0.85; a = 1’; CFL 50; 500 iterations. 
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FIG. 12. Iso-Mach lines for NACAO012 airfoil: M, = 0.85; a = 1”; CFL 50; 500 iterations 

FIG. 13. Comparison of residual history for explicit and implicit methods for NACA12 airfoil at 
M, =0.85; a = 1” on the 3200 nodes mesh; CFL 50: CPU 84 min (a); 283 min (b). 
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LOG RESIDURL 
a, “IN =-cl.19 LOG RLSIDURL 

MIN =-14.64 

FIG. 14. Comparison of residual history for explicit and implicit methods for NACA12 airfoil at 
M, = 2.; a = 10” on the 1360 nodes mesh; CFL 50: CPU 31 min (a); 150 min (b). 

FIG. 15. Enlargement of the locally refined mesh. 
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-CP 

? NIN = -1.201 

I MRX = 0.998 

FIG. 16. Pressure coeflicient distribution for NACAl2 airfoil: M, = 0.85; a = 1” on the refined mesh; 
CFL 50; 500 iterations. 

is a supersonic flow around the same airfoil at M, = 2. and u = lo”, computed on 
a quite coarse O-mesh of 1360 nodes and 2560 elements. We present only the 
history of convergence on Fig. 14 and we note that the efficiency rate of the implicit 
solver versus the explicit one for that problem is about 7. 

The last problem (B,) is the same as in (B,) with a different mesh which is highly 
unstructured (Fig. 15). The pressure coeffkient obtained on the body is shown on 
Fig. 16 and convergence histories for both methods on Fig. 17. Once again, the 
good efficiency of the implicit method is proved; its behaviour is not affected when 
using an unstructured grid. Aerodynamic coeflkients obtained on this grid are: 

(B,) C, = 0.355, C, =0.0575, C, = -0.1220. 
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HIN =-1.811 
LOG RESIDURL 

b+ 
MIN =-5.86 

FIG. 17. Comparison of residual history for explicit and implicit methods for NACAl2 airfoil at 
M, = 0.85; a = 1” on the refined mesh; CFL 50: CPU 64 min (a); 290 min (b). 

FIG. 18. Enlargement of the blunt body mesh. 
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FIG. 19. Isopressure coefficient lines for blunt body: M, = 8.; OL = 0” (AC, =0.2; the first line 
corresponds to the value - 1.65); CFL 50; 285 iteratlons. 
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FIG. 20. Isoentropy lines for blunt body: M, = 8.; a = 0” (AZ = 0.1; the first line corresponds to the 
value 0); CFL 50; 285 iterations. 
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In all computations, the efficiency ratio is between 7 and 12. We notice that the 
convergence is not altered when we use a second-order accurate approximation in 
the physical part of the scheme. This point argues for the use a first-order accurate 
preconditionner in the implicit phase of the scheme. 

The results of this test case set off two other qualities of the method: 

-First, the efficiency of the implicit solver is conserved when computing flows 
with a high angle of attack (cases (BJ and (B,)) which is important for future 
3-dimensional computations on real configurations. 

-Second, the use of unstructured grids obtained by mesh refinement does not 
alter either the efficiency of the implicit procedure. It was important to check that 

finite these designed algorithms combine well with all adaptive capabilities of 
element techniques. 

FIG. 21. Isopressure coefficient lines for blunt body: M, = 8.; a = 20” (AC, = 0.2; the first one 
corresponds to the value - 1.65); CFL 1.8; 2000 iterations. 
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C. High Speed Flow Past a Blunt Body 

We are now concerned with steady hypersonic flow calculations around a blunt 
body with a circular cylinder as a nose. The difficulty in this problem remains in 
the robustness of the algorithms to “support” the displacement of the bow shock 
during the transient phase. All the computations were performed with a mesh of 
1908 nodes and 3640 elements and is presented in Fig. 18. 

Two test cases are presented for the same farfield Mach number of 8 and different 
angles of attack (a = O”, 20”). For the first test-case, a three-step explicit method 
was performed but did not converge for the second test-case and was replaced by 
the four-step one used for (B) problems. The linear system of the implicit method 

FIG. 22. Isoentropy lines for blunt body: M, = 8.; a = 20” (AZ = 0.1; the first one corresponds to the 
value 0); CFL 1.8; 2000 iterations. 

581/84/l-14 
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FIG. 23. Comparison of residual history for explicit and implicit methods for blunt body at M, = 8.; 
x=0”: CFL 50, CPU 30 min (a); CFL 1.8, CPU 144 min (b). 

derived from the Steger-Warming splitting is solved by the collective Gauss-Seidel 
relaxation described earlier. The resolution is stopped when the convergence rate is 
less than 10e3 which means an average number of sweeps of about 10 for these 
problems. 

Isovalues for pressure coefficients and entropy distributions are presented in Figs. 
19 and 20 for test case (Cl ) and Figs. 21 and 22 for test case (C2). 

The results show a good behaviour of the implicit solver with efficiency ratios of 
about 8 for both test cases (Figs. 23 and 24 show the convergence histories of the 
implicit versus the explicit method for both cases). For larger values of CI (a > 20”) 
the explicit version does not converge anymore when starting from the uniform 
flowlield; however, the convergence can be assumed by incrementation of ~1. On the 

FIG. 24. Comparison of residual history for explicit and implicit methods for blunt body at M, = 8.; 
a=20”: CFL 50, CPU 31 min (a); CFL 1.8, CPU 206 min (b). 
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other hand the implicit solver still converges for any value of ~1. The results show 
that implicit solvers seem very well adapted and very efficient to compute steady 
hypersonic flows. 

CONCLUSION 

The numerical results show a very clear gain in efficiency for the implicit scheme 
compared to its explicit version, for all flow regimes. 

With the first-order scheme we have a nearly quadratic convergence (without the 
exact computation of the Jacobian) when the initial solution is closed to the steady 
solution (test case (A)). 

When using a second-order accurate approximation the method is no longer 
quadratically converging but still very efficient. It appears that the incomplete 
solution of the linear system by relaxation is an efficient ‘procedure and must be 
retained for 3D computations. 

The main quality of these implicit schemes is their greater reliability with respect 
to the explicit version. This is clearly shown in the case of high Mach number 
regimes and large angles of attack, revealing the great robustness and efficiency of 
the implicit version of the schemes. 

For the numerical study of spatial approximations, the methodology is par- 
ticularly attractive because of its modular structure; we can change for instance the 
numerical flux in the explicit phase of the scheme without any further program 
changes. We note however that the method is not yet adapted to heavy industrial 
use since for instance, we have to store 2D matrices, but a study of this problem 
is in progress. A new version of the algorithm without any storage of matrices and 
which can be vectorized is under development. 
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